Utilizing symbolic representation in synergistic neural networks classifier of control chart patterns

Conference proceedings article


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์

ไม่พบข้อมูลที่เกี่ยวข้อง


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งLavangnananda K., Sawasdimongkol P.

ผู้เผยแพร่Springer

ปีที่เผยแพร่ (ค.ศ.)2012

Volume number7666 LNCS

Issue numberPART 4

หน้าแรก313

หน้าสุดท้าย321

จำนวนหน้า9

ISBN9783642344770

นอก0302-9743

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84869046075&doi=10.1007%2f978-3-642-34478-7_39&partnerID=40&md5=6a99d1ec78bb3df40ab2d09b8fdf8e0c

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

Control Chart Patterns (CCPs) can be considered as time series. Industry widely used them in their process control. Therefore, accurate classification of these CCPs is vital as abnormalities can then be detected at the earliest stage. This work proposes a framework for neural networks based classifier of CCPs. It adopts a symbolic representation technique known as Symbolic Aggregate ApproXimation (SAX) in preprocessing. It was discovered that difficulty in classifying CCPs with high signal to noise ratio lies in differentiating among three very similar categories within their six categories. Synergism of neural networks is used as the classifier. Classification comprises two levels, the super class and individual category levels. The recurrent neural network known as Time-lag network is selected as classifiers. The proposed method yields superior performance than any previous neural network based classifiers which used the Generalized Autoregressive Conditional Heteroskedasticity (GARH) Model to generate CCPs. ฉ 2012 Springer-Verlag.


คำสำคัญ

ClassificationControl Chart Patterns (CCPs)Neural NetworksProcess controlSymbolic Aggregate Approximation (SAX)Symbolic RepresentationTime series


อัพเดทล่าสุด 2023-28-09 ถึง 07:35