Real-time intrusion detection with fuzzy genetic algorithm
Conference proceedings article
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
ไม่พบข้อมูลที่เกี่ยวข้อง
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Jongsuebsuk P., Wattanapongsakorn N., Charnsripinyo C.
ผู้เผยแพร่: Hindawi
ปีที่เผยแพร่ (ค.ศ.): 2013
ISBN: 9781479905454
นอก: 0146-9428
eISSN: 1745-4557
ภาษา: English-Great Britain (EN-GB)
บทคัดย่อ
In this work, we consider network intrusion detection using fuzzy genetic algorithm to classify network attack data. Fuzzy rule is a machine learning algorithm that can classify network attack data, while a genetic algorithm is an optimization algorithm that can help finding appropriate fuzzy rule and give the best/optimal solution. In this paper, we consider both well-known KDD99 dataset and our own network dataset. The KDD99 dataset is a benchmark dataset that is used in various researches while our network dataset is an online network data captured in actual network environment. We evaluate our IDS in terms of detection speed, detection rate and false alarm rate. From the experiment, we can detect network attack in real-time (or within 2-3 seconds) after the data arrives at the detection system. The detection rate of our algorithm is approximately over 97.5%. ฉ 2013 IEEE.
คำสำคัญ
Fuzzy genetic algorithm, intrusion detection, real-time detection