Existence and approximation for a solution of a generalized equilibrium problem on the dual space of a Banach space

Journal article


Authors/Editors


Strategic Research Themes

No matching items found.


Publication Details

Author listPhuangphoo P., Kumam P.

PublisherSpringerOpen

Publication year2013

JournalFixed Point Theory and Applications (1687-1820)

Volume number2013

ISSN1687-1820

eISSN1687-1812

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84902595250&doi=10.1186%2f1687-1812-2013-264&partnerID=40&md5=8a724cb753d88ab8f802f2840dec4a07

LanguagesEnglish-Great Britain (EN-GB)


View in Web of Science | View on publisher site | View citing articles in Web of Science


Abstract

In this paper, we first prove the existence of a solution for a generalized equilibrium problem with a bifunction defined on the dual space in a Banach space setting. Second, by the virtue of this result, we construct the hybrid projection method for solving a solution of a generalized equilibrium problem. Consequently, we establish the strong convergence theorem by using sunny generalized nonexpansive retraction in the dual of Banach spaces. ฉ2013 Phuangphoo and Kumam; licensee Springer.


Keywords

A bifunction defined on the dual spaceA generalized equilibrium problemThe hybrid projection method


Last updated on 2023-06-10 at 10:02