Microfibrillated cellulose reinforced poly(vinyl alcohol) composites
Conference proceedings article
Authors/Editors
Strategic Research Themes
No matching items found.
Publication Details
Author list: Tanpichai S., Sampson W.W., Eichhorn S.J.
Publisher: Trans Tech Publications
Publication year: 2013
Volume number: 747
Start page: 359
End page: 362
Number of pages: 4
ISBN: 9783037857717
ISSN: 1022-6680
eISSN: 1662-8985
Languages: English-Great Britain (EN-GB)
View in Web of Science | View on publisher site | View citing articles in Web of Science
Abstract
Microfibrillated cellulose (MFC) was successfully prepared from lyocell fibers using combined homogenization and sonication treatments. MFC fibrils with a mean diameter of ~365 nm were observed, after the lyocell fibers with diameters of ~10 μm were mechanically treated for 60 min. Poly(vinyl alcohol) (PVA) composites reinforced with MFC were then fabricated using a solvent casting method. Physical and mechanical properties of the MFC reinforced PVA composites were investigated. An increase of ~13 and ~34% of tensile strength and Young's modulus was observed for the 3 wt% MFC reinforced composites, compared to those of the pure PVA. Raman spectroscopy was also employed to study the deformation micromechanics of the MFC reinforced PVA composites. The position of the Raman peak initially located at ~1095 cm-1, corresponding to the C-O ring stretching and C-O-C glycosidic bond stretching modes, was recorded. During tensile deformation, this peak was observed to shift towards a lower wavenumber position, indicating stress-transfer between the resin and the fibrils. © (2013) Trans Tech Publications, Switzerland.
Keywords
Lyocell fibers, Mechanical pretreatment