Detect the daily activities and in-house locations using smartphone
บทความในวารสาร
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
ไม่พบข้อมูลที่เกี่ยวข้อง
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Sukreep S., Mongkolnam P., Nukoolkit C.
ผู้เผยแพร่: Springer
ปีที่เผยแพร่ (ค.ศ.): 2015
วารสาร: Advances in Intelligent Systems and Computing (2194-5357)
Volume number: 361
หน้าแรก: 215
หน้าสุดท้าย: 225
จำนวนหน้า: 11
นอก: 2194-5357
eISSN: 2194-5357
ภาษา: English-Great Britain (EN-GB)
บทคัดย่อ
Falls are a key cause of significant health problems, especially for elderly people who live alone. Falls are a leading cause of accidental injury and death. To help assist the elderly, we propose a system to detect daily activities and in-house location of a user by means of a smartphone's sensor and Wi-Fi access points. We applied data mining techniques to classify activity detection (e.g., sitting, standing, lying down, walking, running, walking up/downstairs, and falling) and in-house location detection. Health risk level configurations (threshold model) are applied for unhealthy activity detection with an alarm sounding and also short messages sent to those who have responsibility such as a caregiver or a doctor. Moreover, we provide various forms of easy to understand visualization for monitoring and include health risk level summary, daily activity summary, and in-house location summary. ฉ Springer International Publishing Switzerland 2015.
คำสำคัญ
Access point, Activity of daily living (ADL), In-house location, Wireless signal