Postural classification using kinect
Conference proceedings article
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
ไม่พบข้อมูลที่เกี่ยวข้อง
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Visutarrom T., Mongkolnam P., Chan J.H.
ผู้เผยแพร่: Hindawi
ปีที่เผยแพร่ (ค.ศ.): 2014
หน้าแรก: 403
หน้าสุดท้าย: 408
จำนวนหน้า: 6
ISBN: 9781479949632
นอก: 0146-9428
eISSN: 1745-4557
ภาษา: English-Great Britain (EN-GB)
บทคัดย่อ
This research focuses on the comparison of posture recognition, using a data mining classification approach on the skeleton data stream obtained from Kinect camera. We classified four standard postures including Stand, Sit, Sit on floor and Lie Down. We compared six classifiers, namely, decision tree, neural network, na๏ve Bayes, support vector machine, logistic regression and random forest in order to find a suitable classifier. Our best results can correctly classify the postures with 97.88% accuracy, 97.40% sensitivity, and 0.991 ROC area under curve using Max-Min normalization with a decision tree classifier on four transformed attributes. Our future work will use the knowledge obtained to classify a wider range of postures of the elderly while watching television, to be a part of a bigger effort to monitor and study elderly behavior at home. ฉ 2014 IEEE.
คำสำคัญ
Postural classification