Clustering-based multi-class classification of complex disease
Conference proceedings article
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
ไม่พบข้อมูลที่เกี่ยวข้อง
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Phongwattana T., Engchuan W., Chan J.H.
ผู้เผยแพร่: Hindawi
ปีที่เผยแพร่ (ค.ศ.): 2015
หน้าแรก: 25
หน้าสุดท้าย: 29
จำนวนหน้า: 5
ISBN: 9781479960491
นอก: 0146-9428
eISSN: 1745-4557
ภาษา: English-Great Britain (EN-GB)
บทคัดย่อ
Pathway activity data transformed from gene expression profiles may be used to identify tumors, complex diseases progression, and cellular response to stimuli, and so on. Previous researches utilized data mining techniques on pathway activity data to distinguish subjects or to predict the phenotype outcome of subject directly. However, in the multi-class classification, learning those data mixing with population from different groups may result in contaminated model as excessive information is presented. This research, we use a two-stage approach applying clustering to homogenize training data before building the classification model. Hierarchical Clustering is used as a clustering method and Random Forest is used as classifier for evaluating the performance of the proposed method. The results are promising and show that using a clustering technique before classifying improves classification performance in general. ฉ 2015 IEEE.
คำสำคัญ
DNA Microarray, Hierarchical Clustering, Pathway Activities, Two-stage Multi-class Analysis