Dynamic scenario of membrane binding process of Kalata B1
Journal article
Authors/Editors
Strategic Research Themes
No matching items found.
Publication Details
Author list: Nawae W., Hannongbua S., Ruengjitchatchawalya M.
Publisher: Public Library of Science
Publication year: 2014
Journal: PLoS ONE (1932-6203)
Volume number: 9
Issue number: 12
ISSN: 1932-6203
eISSN: 1932-6203
Languages: English-Great Britain (EN-GB)
View in Web of Science | View on publisher site | View citing articles in Web of Science
Abstract
Kalata B1 (kB1), a cyclotide that has been used in medical applications, displays cytotoxicity related to membrane binding and oligomerization. Our molecular dynamics simulation results demonstrate that Trp19 in loop 5 of both monomeric and tetrameric kB1 is a key residue for initial anchoring in the membrane binding process. This residue also facilitates the formation of kB1 tetramers. Additionally, we elucidate that kB1 preferentially binds to the membrane interfacial zone and is unable to penetrate into the membrane. In particular, significant roles of amino acid residues in loop 5 and loop 6 on the localization of kB1 to this membrane-water interface zone are found. This study reveals the roles of amino acid residues in the bioactivity of kB1, which is information that can be useful for designing new therapeutic cyclotides with less toxicity. Copyright: ฉ 2014 Nawae et al.
Keywords
No matching items found.