A runtime estimation framework for ALICE

บทความในวารสาร


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์

ไม่พบข้อมูลที่เกี่ยวข้อง


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งPumma S., Feng W.-C., Phunchongharn P., Chapeland S., Achalakul T.

ผู้เผยแพร่Elsevier

ปีที่เผยแพร่ (ค.ศ.)2017

วารสารFuture Generation Computer Systems: The International Journal of eScience (0167-739X)

Volume number72

หน้าแรก65

หน้าสุดท้าย77

จำนวนหน้า13

นอก0167-739X

eISSN1872-7115

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85014604122&doi=10.1016%2fj.future.2017.02.040&partnerID=40&md5=274445d2d39d91217e8507e518ece8d9

ภาษาEnglish-Great Britain (EN-GB)


ดูในเว็บของวิทยาศาสตร์ | ดูบนเว็บไซต์ของสำนักพิมพ์ | บทความในเว็บของวิทยาศาสตร์


บทคัดย่อ

The European Organization for Nuclear Research (CERN) is the largest research organization for particle physics. ALICE, short for ALarge Ion Collider Experiment, serves as one of the main detectors at CERN and produces approximately 15 petabytes of data each year. The computing associated with an ALICE experiment consists of both online and offline processing. An online cluster retrieves data while an offline cluster farm performs a broad range of data analysis. Online processing occurs as collision events are streamed from the detector to the online cluster. This process compresses and calibrates the data before storing it in a data storage system for subsequent offline processing, e.g., event reconstruction. Due to the large volume of stored data to process, offline processing seeks to minimize execution time and data-staging time of the applications via a two-tier offline cluster — the Event Processing Node (EPN) as the first tier and the World LHC Grid Computing (WLGC) as the second tier. This two-tier cluster requires a smart job scheduler to efficiently manage the running of the application. Thus, we propose a runtime estimation method for this offline processing in the ALICE environment. Our approach exploits application profiles to predict the runtime of a high-performance computing (HPC) application without the need for any additional metadata. To evaluate our proposed framework, we performed our experiment on the actual ALICE applications. In addition, we also test the efficacy of our runtime estimation method to predict the run times of the HPC applications on the Amazon EC2 cloud. The results show that our approach generally delivers accurate predictions, i.e., low error percentages. © 2017 Elsevier B.V.


คำสำคัญ

ALICE experimentBerkeley DwarfsOffline schedulingRuntime estimationScheduler


อัพเดทล่าสุด 2023-25-09 ถึง 07:35