A decomposition-based approach for knee solution approximation in multi-objective optimization

Conference proceedings article


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์

ไม่พบข้อมูลที่เกี่ยวข้อง


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งSudeng S., Wattanapongsakorn N.

ผู้เผยแพร่Hindawi

ปีที่เผยแพร่ (ค.ศ.)2016

หน้าแรก3710

หน้าสุดท้าย3717

จำนวนหน้า8

ISBN9781509006229

นอก0146-9428

eISSN1745-4557

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85008258402&doi=10.1109%2fCEC.2016.7744259&partnerID=40&md5=1a4650b9cb7b3e2ef3087a7fa77671f2

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

Multi-objective Evolutionary Algorithms (MOEAs) always approximate a set of optimal solutions. This set is required to be well spread and uniformly covering wide area of the Pareto-optimal front. In practical context, the Decision Maker (DM) usually chooses solutions in the middle of objective space, where the surface bulges out the most. Such solutions are called 'knee solutions'. They are the most attractive solutions to the DM when he/she does not have an explicit preference. The aim of this paper is to develop a knee-based MOEA which is a method to find Pareto-optimal solutions with biasing parameter to focus on knee regions. The proposed approach is called k-MOEA/D-DE algorithm. It uses a distance-based concept to guide the solution process towards knee regions. The extent of the obtained solutions can be controlled by density controller parameter. The approach is verified by two and three-objective knee-based test problems. In addition, the approach has been applied to many-objective knee-based test problems including four, five and six-objective problems. The results in two and three-objective problems have shown that our approach is competitive to well-known knee-based MOEAs in convergence to optimality. Furthermore, knee solutions are visible and clearly seen in four, five and six-objective problems. ฉ 2016 IEEE.


คำสำคัญ

Knee-based MOEAsKnee regionKnee solutions


อัพเดทล่าสุด 2023-27-09 ถึง 07:36