Time Lagged Back Propagation Neural Network with rainfall for flood forecasting

Conference proceedings article


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์

ไม่พบข้อมูลที่เกี่ยวข้อง


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งLueangaram S., Waraporn N.

ผู้เผยแพร่Hindawi

ปีที่เผยแพร่ (ค.ศ.)2016

หน้าแรก63

หน้าสุดท้าย68

จำนวนหน้า6

ISBN9781509012169

นอก0146-9428

eISSN1745-4557

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84987950732&doi=10.1109%2fINES.2016.7555094&partnerID=40&md5=43242053439d0a980150b41cdeafafd7

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

Flooding is a major problem in many countries while flood models have been proposed by various research groups on hydrological model in the past. Recently, Artificial Neural Network has been applied to the flood model. However, the learning factors of Neural Network for flood models need to include water level and rainfall which are two major impacts to the flooding. Therefore, this paper proposed Time-Lagged Back Propagation Neural Network Model with water flow and rainfall for flood forecasting. We ran our model with water flow and rainfall at the rivers around the lower part of northern region of Thailand. We compared the results between Back Propagation Neural Network Model and Time Lagged Back Propagation Neural Network Model with Gamma Memory. The study shows that Time Lagged Back Propagation Neural Network Model with Gamma Memory has better performance. ฉ 2016 IEEE.


คำสำคัญ

Flood PredictionTime-Lagged Back Propagation Neural Network


อัพเดทล่าสุด 2023-27-09 ถึง 07:36