Crosslinked poly(vinyl alcohol) composite films with cellulose nanocrystals: Mechanical and thermal properties
Journal article
Authors/Editors
Strategic Research Themes
No matching items found.
Publication Details
Author list: Tanpichai S., Oksman K.
Publisher: Wiley
Publication year: 2018
Journal: Journal of Applied Polymer Science (0021-8995)
Volume number: 135
Issue number: 3
ISSN: 0021-8995
eISSN: 1097-4628
Languages: English-Great Britain (EN-GB)
View in Web of Science | View on publisher site | View citing articles in Web of Science
Abstract
In this work, poly(vinyl alcohol) (PVA) and cellulose nanocrystals (CNCs) were crosslinked using sodium tetraborate decahydrate (borax) to improve the mechanical and thermal properties of the neat PVA. The results showed that the CNCs affected the crystallization behavior of the crosslinked PVA. The crystallization temperature of the crosslinked PVA with CNCs increased considerably from ~152 to ~187 °C. The continuous improvement of the thermal stability was observed with the increasing content of CNCs in the crosslinked PVA films. Additionally, the strong interaction between the CNCs and PVA was theoretically estimated from the Young’s modulus values of the composites. Thermodynamic mechanical testing revealed that the crosslinked PVA composite films with CNCs could bear higher loads at high temperature compared to the films without the CNCs. At 60 °C, 2.7 GPa was reported for the storage modulus of the crosslinked composites with 3 wt % of CNCs, twice as high as that for the crosslinked films without CNCs. Moreover, creep results were improved when CNCs were added in the crosslinked nanocomposites. The materials prepared in this work could broaden the opportunities for applications in a wide range of temperatures. © 2017 Wiley Periodicals, Inc.
Keywords
Cellulose and other wood products