Evolution of milled cavity in the multiple laser scans of titanium alloy under a flowing water layer

บทความในวารสาร


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์

ไม่พบข้อมูลที่เกี่ยวข้อง


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งTangwarodomnukun V., Wuttisarn T.

ผู้เผยแพร่Springer

ปีที่เผยแพร่ (ค.ศ.)2017

วารสารInternational Journal of Advanced Manufacturing Technology (0268-3768)

Volume number92

Issue number#

หน้าแรก293

หน้าสุดท้าย302

จำนวนหน้า10

นอก0268-3768

eISSN1433-3015

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85013418984&doi=10.1007%2fs00170-017-0125-4&partnerID=40&md5=1da4dcbfa07c54787c191093256a0541

ภาษาEnglish-Great Britain (EN-GB)


ดูในเว็บของวิทยาศาสตร์ | ดูบนเว็บไซต์ของสำนักพิมพ์ | บทความในเว็บของวิทยาศาสตร์


บทคัดย่อ

The needs for damage-free and fine-scale features with good surface finish have been challenging today’s manufacturing technologies. Laser machining process performed under a flowing water layer is a capable technique to satisfy these requirements with high processing rate and clean cut surface. However, the capability and performance of this process for milling applications have not clearly been understood yet. Therefore, this study aims at enabling an insight into the laser milling process under a flowing water layer. Titanium alloy (Ti-6Al-4V) was employed as a work sample in this study, and a nanosecond pulse laser was used to ablate the material in water. The effects of laser traverse speed and number of scans on geometrical dimensions, surface and subsurface characteristics were experimentally investigated. The results revealed that a deeper milled cavity with a smaller taper angle was achievable by using a slower traverse speed and more number of laser scans. A trade-off between the uniformity and roughness of milled surface was also evidenced under the different laser traverse speeds examined in this study. By comparing to the laser milling of titanium alloy in ambient air, there was no metallurgical change remarkably found in the laser-milled area when the process was carried out in water. In addition, specific energy required to fabricate a laser-milled cavity was about 18 kWs/mm3 for a single scan technique and linearly increased with the number of scans. The findings of this study will advance the understanding of laser ablation in flowing water as well as other liquid-assisted laser machining techniques. The implication of this study will further open wider applications of liquid-assisted laser ablation for a more intricate micro-fabrication with high resolution, high processing rate, and less thermal damage. © 2017, Springer-Verlag London.


คำสำคัญ

CavityMillingWater


อัพเดทล่าสุด 2023-29-09 ถึง 07:35