The effects of magnetic field-enhanced thermal spraying on the friction and wear characteristics of poly(ether-ether-ketone) coatings
Journal article
Authors/Editors
Strategic Research Themes
No matching items found.
Publication Details
Author list: Tharajak J., Palathai T., Sombatsompop N.
Publisher: Elsevier
Publication year: 2017
Journal: Wear: An International Journal on the Science and Technology of Friction, Lubrication and Wear (0043-1648)
Volume number: 372-373
Start page: 68
End page: 75
Number of pages: 8
ISSN: 0043-1648
Languages: English-Great Britain (EN-GB)
View in Web of Science | View on publisher site | View citing articles in Web of Science
Abstract
It is demonstrated that the wear of poly(ether-ether-ketone) (PEEK) composite coatings can be improved by depositing them in the presence of a magnetic field. In this investigation, particles of PEEK were deposited on a low-carbon steel substrate by thermal spray coating under a magnetic field causing them to become aligned. Friction and wear behavior of the coatings, including crystallization level and hardness, were considered under different magnetic intensities, distances away from the substrate, and applied loads. The results showed that the degree of crystallinity and hardness of the coatings were not uniform across the distances away from the substrate. The maximum crystallinity and hardness were found at a distance of 100 µm from the substrate. The magnetic intensity had an effect on the PEEK coatings at distances of 50–150 µm from the substrate, the most pronounced effect being observed at 100 µm. The magnetic field was found to improve the coating properties of PEEK, resulting in reduced friction coefficient and increased wear resistance. Surprisingly, the specific wear rate of PEEK coatings decreased when the applied load was reduced from 25 N to 5 N. The application of a magnetic field could be successfully used in the thermal spray process for improving the friction and wear properties of PEEK coatings. © 2016 Elsevier B.V.
Keywords
Poly(ether-ether-ketone), Thermal spray coating, Tribology