Pellet Injection in ITER with ∇b-induced Drift Effect using TASK/TR and HPI2 Codes
Conference proceedings article
Authors/Editors
Strategic Research Themes
No matching items found.
Publication Details
Author list: Kongkurd R., Wisitsorasak A.
Publisher: IOP Publishing
Publication year: 2017
Volume number: 901
Issue number: 1
ISSN: 1742-6588
eISSN: 1742-6596
Languages: English-Great Britain (EN-GB)
View in Web of Science | View on publisher site | View citing articles in Web of Science
Abstract
The impact of pellet injection in International Thermonuclear Experimental Reactor (ITER) are investigated using integrated predictive modeling codes TASK/TR and HPI2 . In the core, the plasma profiles are predicted by the TASK/TR code in which the core transport models consist of a combination of the MMM95 anomalous transport model and NCLASS neoclassical transport. The pellet ablation in the plasma is described using neutral gas shielding (NGS) model with inclusion of the ∇B-induced drift of the ionized ablated pellet particles. It is found that the high-field-side injection can deposit the pellet mass deeper than the injection from the low-field-side due to the advantage of the ∇B-induced drift. When pellets with deuterium-tritium mixing ratio of unity are launched with speed of 200 m/s, radius of 3 mm and injected at frequency of 2 Hz, the line average density and the plasma stored energy are increased by 80% and 25% respectively. The pellet material is mostly deposited at the normalized minor radius of 0.5 from the edge. © Published under licence by IOP Publishing Ltd.
Keywords
No matching items found.