Identification of plant precursor mirnas using structural robustness and secondary structures features

Conference proceedings article


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์

ไม่พบข้อมูลที่เกี่ยวข้อง


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งAnuntakarun S., Wattanapornprom W., Lertampaiporn S.

ผู้เผยแพร่Hindawi

ปีที่เผยแพร่ (ค.ศ.)2017

Volume numberPart F131935

หน้าแรก1

หน้าสุดท้าย4

จำนวนหน้า4

ISBN9781450352970

นอก0146-9428

eISSN1745-4557

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85038382131&doi=10.1145%2f3143344.3143347&partnerID=40&md5=860225caa045b597e16b2bb22477174e

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

This work presents an identification tool for plant precursor miRNAs (pre-miRNAs) using structural robustness and derivative features which can improve performance in discriminating the plant pre-miRNAs from pseudo pre-miRNAs. The classification models were trained with plant pre-miRNAs and pseudo hairpins datasets from PlantMiRNAPred web site. The top 20 features were selected from four groups of features including sequence-based features, secondary structure features, base-pair features and a self-containment index score. In particular, the self-containment index score was found to be the highest informative feature among the 20 selected features. Ten-fold cross validation was applied to choose a classifier algorithm with the highest performance being among Support Vector Machine, Random Forest, Decision Tree, Na๏ve Bayes, K-nearest neighbor, Back-propagation Neural Network, Ripper and RBF network based on the ROC area and accuracy. The results demonstrated that the Random Forest model using 20 selected features achieved 97% accuracy and 94% sensitivity in test sets to discriminating real plant pre-miRNAs from others. ฉ 2017 Association for Computing Machinery.


คำสำคัญ

Precursor miRNAsSelf-containment index score


อัพเดทล่าสุด 2023-02-10 ถึง 07:36