Best proximity point theorems for cyclic contractions mappings

Book chapter abstract


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์

ไม่พบข้อมูลที่เกี่ยวข้อง


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งMongkolkeha C., Kumam P.

ผู้เผยแพร่Hindawi

ปีที่เผยแพร่ (ค.ศ.)2017

หน้าแรก201

หน้าสุดท้าย228

จำนวนหน้า28

ISBN9781351243360; 9780815369455

นอก0146-9428

eISSN1745-4557

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85053531040&doi=10.1201%2f9781351243377&partnerID=40&md5=ce140b780fb228e288fb68627db2797d

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

Many problems in mathematics such as equilibrium and variational inequalities, mathematical economics, game theory and optimization can be formulated as equations of the form T x = x, where T is a self mapping in some suitable framework, because of its ability to solve ordinary differential equations, integral equations, matrix equations and others. However, given nonempty subsets A and B of X. A mapping T: A → B (or T: A∪B → A∪B) using the equation T x = x does not necessarily have a solution. It is worthwhile to find an approximate solution x under mapping T so that the error d(x, T x) is minimal. This is the basis of the optimal approximation theory that includes a generalized fixed point. Whenever A coincides with B, the optimization problem known as a best proximity point of the mapping T reduces to a fixed point problem. Fan [7] introduced a classical best approximation theorem: if A is a nonempty compact convex subset of a Hausdorff locally convex topological vector space B and T: A ? B is a continuous mapping, there exists an element x ε A such that d(T x, x) = d(T x, A):= inf{d(T x, y): y ε A}. Several authors, including Prolla [15], Reich [16], Sehgal [20, 21], derived extensions of Fan’s theorem in many directions. © 2018 by Taylor & Francis Group, LLC.


คำสำคัญ

ไม่พบข้อมูลที่เกี่ยวข้อง


อัพเดทล่าสุด 2023-04-10 ถึง 07:37