Effect of magnetic field on laminar forced convective heat transfer of MWCNT–Fe3O4/water hybrid nanofluid in a heated tube

Conference proceedings article


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์

ไม่พบข้อมูลที่เกี่ยวข้อง


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งAlsarraf J., Rahmani R., Shahsavar A., Afrand M., Wongwises S., Tran M.D.

ผู้เผยแพร่Springer

ปีที่เผยแพร่ (ค.ศ.)2019

Volume number137

Issue number5

หน้าแรก1809

หน้าสุดท้าย1825

จำนวนหน้า17

ISBN9783319947020

นอก2194-5357

eISSN2194-5357

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85059097227&doi=10.1007%2f978-3-319-94703-7_9&partnerID=40&md5=5717d0403cfdeca14bd92414e36b77b2

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

The aim of this proposed study is to investigate the discriminant power of Hjorth Descriptor in classification of three categorized groups of subjects’ ECG measurement, which are Normal Sinus Rhythm (NSR), Atrial Fibrillation (AF) and Congestive Heart Failure (CHF). This feature has been previously employed to measure the healthiness in persons via their ECG recordings. The algorithm was designed and implemented to extract the Hjorth features and evaluate the performance of classification made on those features by comparing all classifications made among those three databases. Each categorized group included thirty subjects evenly and only three complete QRS complexes of each record in our databases were selected, segmented and extracted for their Hjorth descriptor estimators. In this work three different classifiers were selected, which are Least-Squares (LS), Maximum likelihood (ML) and Support Vector Machine (SVM) for performance evaluation and accuracy comparison. The experimental results from our study showed that the most effective classifier was found to be ML with a mean accuracy of 84.89%, SE of 88.82% and SP of 99.75%, as compared to LS which was found to be the second effective classifier with 88.22% accuracy, and finally SVM with 76.94%. These findings suggested that the promisingly dominant ECG based Hjorth descriptor is capable of class separation among cardiac arrhythmia patient groups. © Springer Nature Switzerland AG 2019.


คำสำคัญ

ElectrocardiogramHjorth descriptor


อัพเดทล่าสุด 2023-25-09 ถึง 07:35