Experiment and analytical model of laser milling process in soluble oil
Journal article
Authors/Editors
Strategic Research Themes
No matching items found.
Publication Details
Author list: Tangwarodomnukun V., Dumkum C.
Publisher: Springer
Publication year: 2018
Journal: International Journal of Advanced Manufacturing Technology (0268-3768)
Volume number: 96
Issue number: #
Start page: 607
End page: 621
Number of pages: 15
ISSN: 0268-3768
eISSN: 1433-3015
Languages: English-Great Britain (EN-GB)
View in Web of Science | View on publisher site | View citing articles in Web of Science
Abstract
The liquid-assisted laser machining process is a promising method to cut materials with minimum thermal damage caused by laser, and water is typically used in the process due to its high thermal conductivity, nontoxicity, and relatively low price. However, water can intrinsically oxidize ferrous metals and in turn deteriorate the workpiece through corrosion during laser ablation in water. This study has for the first time proposed laser ablation in soluble oil to effectively cut the ferrous metals by using laser in a high cooling rate and low potentiality of corrosion to the metals. A nanosecond pulse laser was used to scan over the AISI H13 steel sheet to create a square cavity, while the workpiece surface was covered by a thin and flowing soluble oil film throughout the laser milling process. The effects of laser scan overlap, traverse speed, and liquid flow rate on cavity dimensions and milled surface morphology were experimentally examined. The results revealed that a clean and uniform cavity with a smooth machined surface can be attained by using 70% scan overlap, 6 mm/s traverse speed, and 3.9 cm3/s soluble oil flow rate. Furthermore, analytical models based on heat transfer equations were formulated to predict the cavity profile and cooling of molten droplets in flowing liquid. The predicted profile was found to correspond well to the experiment, and the calculated temperature of cut particles can endorse the experimental findings on debris deposition and recast formation. The implications of this study could bring a new technological approach for damage-free fabrication and fine-scale manufacturing. ฉ 2018, Springer-Verlag London Ltd., part of Springer Nature.
Keywords
Oil, steel