The experimental new hybrid solar dryer and hot water storage system of thin layer coffee bean dehumidification
Journal article
Authors/Editors
Strategic Research Themes
No matching items found.
Publication Details
Author list: Deeto S., Thepa S., Monyakul V., Songprakorp R.
Publisher: Elsevier
Publication year: 2018
Journal: Renewable Energy (0960-1481)
Volume number: 115
Start page: 954
End page: 968
Number of pages: 15
ISSN: 0960-1481
eISSN: 1879-0682
Languages: English-Great Britain (EN-GB)
View in Web of Science | View on publisher site | View citing articles in Web of Science
Abstract
The thin layer coffee beans dehumidification and hot water storage were investigated in solar greenhouse dryer simultaneously. The thermal energy was stored for use in the absence of sunlight. The conditions were studied the flow rate of water circulating, model of installation for solar collector assistance, the area ratio of product dehumidification to solar hot water producing (Ad:Ac), flow pattern of water circulation and capacity tank of water circulating in the system. The experiments were found the flow pattern of water circulation within the force flow 0.20 kg/s-mˆ2, tray products temperature (45 deg. C) at (Ad:Ac) 1:1, capacity tank of water circulating (60 L). The thermal energy can be used and stored in the form of hot water and reused at a time without sunlight as well. The initial coffee beans moisture content was dropped from 55 to below 12 (%w.b.) in 12 h drying time. The optimum of mathematical equations for thin layer coffee beans drying based on Midilli mathematical model i.e. (MR = a exp(-ktˆn) – bt); k = 0.03838, n = 1.56771, a = 1.03046, b = −0.00477, R2 = 0.9896, RMSE = 0.0420. Moreover, the effective moisture diffusivity coefficient of 9.754 × 10ˆ-11 mˆ2/s. © 2017 Elsevier Ltd
Keywords
Coffee bean dehumidification, Effective moisture diffusivity coefficient, Solar greenhouse dryer, Solar hot water storage