A modified self-adaptive conjugate gradient method for solving convex constrained monotone nonlinear equations for signal recovery problems
Conference proceedings article
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
ไม่พบข้อมูลที่เกี่ยวข้อง
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Abubakar A.B., Kumam P., Awwal A.M., Thounthong P.
ผู้เผยแพร่: Hindawi
ปีที่เผยแพร่ (ค.ศ.): 2019
Volume number: 7
Issue number: 8
ISBN: 9781728140551
นอก: 0146-9428
eISSN: 1745-4557
ภาษา: English-Great Britain (EN-GB)
ดูในเว็บของวิทยาศาสตร์ | ดูบนเว็บไซต์ของสำนักพิมพ์ | บทความในเว็บของวิทยาศาสตร์
บทคัดย่อ
Clustering analysis is widely applied in several domains of study. Using a suitable number of clusters is one of the most important factors to influence the performance of clustering. Several algorithms of cluster validation have been developed to find such a number. In this paper, we proposed a method for cluster validation adapted from the Discrimination Evaluation via Optic Diffraction Analysis (DEODA) algorithm to derive an appropriate number of clusters. In particular, our method uses DEODA to perform within-and between-cluster discrimination analysis in order to find the suitable number of clusters. We evaluate our method by comparing similarity score against the existing cluster validation algorithm i.e., the Silhouette index. The results show that the similarity scores derived from our method are higher than results yielded from the Silhouette index. ฉ 2019 IEEE.
คำสำคัญ
Cluster Validity Index, external validation indices, internal validation indices