Self-Assembled Three-Dimensional Bi 2 Te 3 Nanowire-PEDOT:PSS Hybrid Nanofilm Network for Ubiquitous Thermoelectrics
Journal article
Authors/Editors
Strategic Research Themes
No matching items found.
Publication Details
Author list: Thongkham W., Lertsatitthanakorn C., Jiramitmongkon K., Tantisantisom K., Boonkoom T., Jitpukdee M., Sinthiptharakoon K., Klamchuen A., Liangruksa M., Khanchaitit P.
Publisher: American Chemical Society
Publication year: 2019
Volume number: 11
Issue number: 6
ISSN: 1944-8244
eISSN: 1944-8244
Languages: English-Great Britain (EN-GB)
View in Web of Science | View on publisher site | View citing articles in Web of Science
Abstract
Thermoelectric generation capable of delivering reliable performance in the low-temperature range (<150 °C) for large-scale deployment has been a challenge mainly due to limited properties of thermoelectric materials. However, realizing interdependence of topological insulators and thermoelectricity, a new research dimension on tailoring and using the topological-insulator boundary states for thermoelectric enhancement has emerged. Here, we demonstrate a promising hybrid nanowire of topological bismuth telluride (Bi 2 Te 3 ) within the conductive poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) matrix using the in situ one-pot synthesis to be incorporated into a three-dimensional network of self-assembled hybrid thermoelectric nanofilms for the scalable thermoelectric application. Significantly, the nanowire-incorporated film network exhibits simultaneous increase in electrical conductivity and Seebeck coefficient as opposed to reduced thermal conductivity, improving thermoelectric performance. Based on comprehensive measurements for electronic transport of individual nanowires revealing an interfacial conduction path along the Bi 2 Te 3 core inside the encapsulating layer and that the hybrid nanowire is n-type semiconducting, the enhanced thermoelectricity is ascribed to increased hole mobility due to electron transfer from Bi 2 Te 3 to PEDOT:PSS and importantly charge transport via the Bi 2 Te 3 -PEDOT:PSS interface. Scaling up the nanostructured material to construct a thermoelectric generator having the generic pipeline-insulator geometry, the device exhibits a power factor and a figure of merit of 7.45 μW m -1 K -2 and 0.048, respectively, with an unprecedented output power of 130 μW and 15 day operational stability at δT = 60 °C. Our findings not only encourage a new approach to cost-effective thermoelectric generation, but they could also provide a route for the enhancement of other applications based on the topological nanowire. © 2019 American Chemical Society.
Keywords
3D self-assembled, Bi 2 Te 3 encapsulation, nanowire-based thermoelectrics, organic-inorganic interface, topological insulator