Stochastic description and evaluation of ocean acoustics time-series for frequency and dispersion estimation using particle filtering approach

บทความในวารสาร


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งAunsri N., Chamnongthai K.

ผู้เผยแพร่Elsevier

ปีที่เผยแพร่ (ค.ศ.)2021

วารสารApplied Acoustics (0003-682X)

Volume number178

นอก0003-682X

eISSN1872-910X

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85102291114&doi=10.1016%2fj.apacoust.2021.108010&partnerID=40&md5=a2a7273cfd1038cf92eacec25791239a

ภาษาEnglish-Great Britain (EN-GB)


ดูในเว็บของวิทยาศาสตร์ | ดูบนเว็บไซต์ของสำนักพิมพ์ | บทความในเว็บของวิทยาศาสตร์


บทคัดย่อ

This paper presents a stochastic description and evaluation of the ocean acoustics signal for the interpretation of the signal in the frequency domain in order to estimate the modal frequency and dispersion curves of the ocean acoustics signal. Thus, this investigation considered the analysis and simulation of an ocean acoustics time-series in the frequency-domain where the signal in the time-domain was corrupted by white Gaussian noise. With a stochastic property of the measured acoustics signal, we derived the accurate posterior probability distribution of the ocean acoustics modal frequencies and then incorporated a mathematical model of the signal propagating in a dispersive media to obtain a likelihood function for a sequential Bayesian filtering framework that is used for modal frequency and dispersion estimation. Sequential Bayesian filtering, a particle filter in particular, is implemented for frequency and dispersion estimation to test the accuracy of the derived model. Demonstrated via simulation results, the proposed method performs excellent estimation as compared to the conventional MAP estimator especially at high noise level. Finally, evaluated by the Monte Carlo root mean squared errors (MCRMSE), the proposed stochastic model offers excellent tracking results with smaller errors than those provided by the existing methods even in low signal-to-noise ratios (SNRs), illustrating the noise robustness and superiority of the proposed model over the other approaches. © 2021 Elsevier Ltd


คำสำคัญ

Chi-squared distributionFrequency estimationLikelihood function


อัพเดทล่าสุด 2024-04-10 ถึง 00:00