Novel D-SLP Controller Design for Nonlinear Feedback Control
Journal article
Authors/Editors
Strategic Research Themes
Publication Details
Author list: Pongfai J., Assawinchaichote W., Shi P., Su X.
Publisher: Institute of Electrical and Electronics Engineers
Publication year: 2020
Journal: IEEE Access (2169-3536)
Volume number: 8
Start page: 128796
End page: 128808
Number of pages: 13
ISSN: 2169-3536
eISSN: 2169-3536
Languages: English-Great Britain (EN-GB)
View in Web of Science | View on publisher site | View citing articles in Web of Science
Abstract
Novel nonlinear feedback control based on the dragonfly swarm learning process (D-SLP) algorithm is proposed in this paper. This approach improves the performance, stability and robustness of designing the nonlinear system controller. The D-SLP algorithm is the combination of the dragonfly algorithm (DA) and swarm learning process (SLP) algorithm by applying the DA to the learning process of the SLP algorithm. Furthermore, the estimation of the nonlinear term by using gradient descent is proposed in the process of the D-SLP algorithm. The learning rate is adjusted according to the stable learning rate, which is derived according to the Lyapunov stability theorem. To show the superior performance and robustness of the proposed control method, it is compared with the simulation of designing the controller based on a permanent magnet synchronous motor (PMSM) control system with the online autotuning parameter of a PID controller and LQR controller with two case studies. The conventional SLP algorithm and DA are used to autotune the PID controller, while an artificial bee colony algorithm and a flower pollination algorithm (ABC-FPA) autotune the LQR controller. From the simulation results, the proposed control method can provide a better response than the other control method. Additionally, the global convergence of the D-SLP algorithm is analyzed according to Markov chain modeling and proved to correspond with the policy of global convergence for stochastic search algorithms. © 2013 IEEE.
Keywords
Dragonfly algorithm (DA), gradient descent method, Markov chain modeling, nonlinear estimation, swarm learning process (SLP) algorithm