Cluster-Boosted Multi-Task Learning Framework for Survival Analysis
Conference proceedings article
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Wang, Lu; Chignell, Mark; Jiang, Haoyan; Charoenkitkarn, Nipon;
ผู้เผยแพร่: Hindawi
ปีที่เผยแพร่ (ค.ศ.): 2020
หน้าแรก: 255
หน้าสุดท้าย: 262
จำนวนหน้า: 8
ISBN: 9781728195742
นอก: 0146-9428
eISSN: 1745-4557
ภาษา: English-Great Britain (EN-GB)
ดูในเว็บของวิทยาศาสตร์ | ดูบนเว็บไซต์ของสำนักพิมพ์ | บทความในเว็บของวิทยาศาสตร์
บทคัดย่อ
Accurately predicting the time to an event of interest is an important problem in a wide range of real-world applications. However, prediction is often difficult because many medical datasets have a large number of unlabeled ('censored') instances because labeling is costly and time consuming. Survival analysis focuses on labeled data to predict the time to an event of interest, such as time of death, or conversion to a different stage in a progressive disease. Grouping structure, which naturally exists in medical datasets, can be exploited to improve generalization performance by learning multiple related survival prediction tasks for subgroups collaboratively. Thus a multi-task learning framework can connect multiple survival prediction tasks (for different subgroups) and learn them simultaneously. In order to take into account both censored information, as well as discover the grouping structure, we propose a novel cluster-boosted multitask learning framework for survival analysis that boosts survival prediction performance. We develop an efficient algorithm and demonstrate the performance of the proposed cluster-boosted multi-task survival analysis method on The Cancer Genome Atlas (TCGA) dataset. Our results show that the proposed approach can significantly improve prediction performance in survival analysis while also identifying different subgroups of cancer patients. © 2020 IEEE.
คำสำคัญ
Cluster-boosted framework, Multi-task learning, Prediction of death time