Two-Phase Multi-Party Computation Enabled Privacy-Preserving Federated Learning

Conference proceedings article


ผู้เขียน/บรรณาธิการ

ไม่พบข้อมูลที่เกี่ยวข้อง


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งKanagavelu, Renuga; Li, Zengxiang; Samsudin, Juniarto; Yang, Yechao; Yang, Feng; Mong Goh, Rick Siow; Cheah, Mervyn; Wiwatphonthana, Praewpiraya; Akkarajitsakul, Khajonpong;Wang, Shangguang;

ผู้เผยแพร่Hindawi

ปีที่เผยแพร่ (ค.ศ.)2020

หน้าแรก410

หน้าสุดท้าย419

จำนวนหน้า10

ISBN9781728160955

นอก0146-9428

eISSN1745-4557

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089089620&doi=10.1109%2fCCGrid49817.2020.00-52&partnerID=40&md5=5c2482495d24e2c9b44c24b201fee692

ภาษาEnglish-Great Britain (EN-GB)


ดูในเว็บของวิทยาศาสตร์ | ดูบนเว็บไซต์ของสำนักพิมพ์ | บทความในเว็บของวิทยาศาสตร์


บทคัดย่อ

Countries across the globe have been pushing strict regulations on the protection of personal or private data collected. The traditional centralized machine learning method, where data is collected from end-users or IoT devices, so that it can discover insights behind real-world data, may not be feasible for many data-driven industry applications in light of such regulations. A new machine learning method, coined by Google as Federated Learning (FL) enables multiple participants to train a machine learning model collectively without directly exchanging data. However, recent studies have shown that there is still a possibility to exploit the shared models to extract personal or confidential data. In this paper, we propose to adopt Multi-Party Computation (MPC) to achieve privacy-preserving model aggregation for FL. The MPC-enabled model aggregation in a peer-to-peer manner incurs high communication overhead with low scalability. To address this problem, the authors proposed to develop a two-phase mechanism by 1) electing a small committee and 2) providing MPC-enabled model aggregation service to a larger number of participants through the committee. The MPC-enabled FL framework has been integrated in an IoT platform for smart manufacturing. It enables a set of companies to train high quality models collectively by leveraging their complementary data-sets on their own premises, without compromising privacy, model accuracy vis-a'-vis traditional machine learning methods and execution efficiency in terms of communication cost and execution time. © 2020 IEEE.


คำสำคัญ

Federated LearningMulti-Party ComputationPrivacy-PreservingSecret SharingSmart Manufacturing


อัพเดทล่าสุด 2023-03-10 ถึง 07:36