Developing a Smart IoT Solution to Monitor on-Bed Movement Patterns
Conference proceedings article
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Youngkong P., Panpanyatep W., Thamrongaphichartkul K.
ผู้เผยแพร่: Hindawi
ปีที่เผยแพร่ (ค.ศ.): 2020
หน้าแรก: 306
หน้าสุดท้าย: 309
จำนวนหน้า: 4
ISBN: 9781728166940
นอก: 0146-9428
eISSN: 1745-4557
ภาษา: English-Great Britain (EN-GB)
บทคัดย่อ
IoT devices and systems become a part of modern living. They are mostly used to monitor daily activities, especially related to personal health and fitness. In fact, it is getting more crucial during the COVID-19 pandemic. In this study, a smart monitoring and alarming IoT system called 'NEF' was modified to recognize on-bed movement patterns including prone position applying different machine learning techniques. On-bed movement patterns were collected from 7 subjects. Considering only prone and supine positions, the models obtained from multilayer perceptron was the best. However, random forest yielded the highest overall correctly classified percentage. Further investigation is likely to include beddings such as pillows and blankets. © 2020 IEEE.
คำสำคัญ
Monitor and Alarm, On-Bed Movement, Prone Position






