Using Generative Adversarial Networks for Detecting Stock Price Manipulation: The Stock Exchange of Thailand Case Study
Conference proceedings article
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Leangarun T., Tangamchit P., Thajchayapong S.
ผู้เผยแพร่: Hindawi
ปีที่เผยแพร่ (ค.ศ.): 2020
หน้าแรก: 2162
หน้าสุดท้าย: 2169
จำนวนหน้า: 8
ISBN: 9781728125473
นอก: 0146-9428
eISSN: 1745-4557
ภาษา: English-Great Britain (EN-GB)
บทคัดย่อ
We implemented an automated system that uses unsupervised learning to detect stock price manipulation events. Generative adversarial networks (GANs) were trained with regular market transactions in a limit order book format. GANs can recognize normal trading behaviors of good governance stocks with the various price ranges, trading volume, and market capitalization. Stocks that were traded differently were assumed to be suspicious, thus required further manual investigation. We tested the system with 6 real manipulation cases that had been prosecuted from the stock exchange of Thailand. The proposed system can identify 5 out of 6 cases correctly with a very low false-positive rate. © 2020 IEEE.
คำสำคัญ
stock market, stock price manipulation detection