A Comparison of Destination Clustering using Density-based Algorithm on the Trip Planning Optimization for Last-Mile Parcel Delivery
Conference proceedings article
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Prachitmutita, Issaret; Padungweang, Praisan; Rojanapornpun, Olarn;
ผู้เผยแพร่: Hindawi
ปีที่เผยแพร่ (ค.ศ.): 2020
ISBN: 9781450377591
นอก: 0146-9428
eISSN: 1745-4557
ภาษา: English-Great Britain (EN-GB)
บทคัดย่อ
This study examines the pipeline for real-world delivery trip planning optimization. The study focuses on the capacitated vehicle routing problems. Density-based clustering algorithms were applied prior to resolving the capacitated vehicle routing problem (CVRP) to reduce processing time and to maintain acceptable efficiency. The experimental results with 25 CVRP pipelines were compared. The results showed that the hierarchical density-based spatial clustering of applications with noise (HDBSCAN) method achieved the highest performance. It could reduce the time of trip planning by 30-40% and total distance by 2.2% compared with the traditional method. © 2020 ACM.
คำสำคัญ
Capacitated Vehicle Routing Problem, Clustering, Last-Mile Delivery, Logistics, Route Optimization