Identification of Gene Subnetwork Biomarkers of Lung Cancer from RNA-seq Data

Conference proceedings article


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งSreebunpeng, Kritsada; Chan, Jonathan H.; Meechai, Asawin;

ผู้เผยแพร่Hindawi

ปีที่เผยแพร่ (ค.ศ.)2020

หน้าแรก33

หน้าสุดท้าย39

จำนวนหน้า7

ISBN9781450388238

นอก0146-9428

eISSN1745-4557

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097285006&doi=10.1145%2f3429210.3429212&partnerID=40&md5=7bb46c99be5934edfbc16575539c32b7

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

In recent years, the increasing availability of cancer RNA-seq datasets has provided unprecedented information and opportunities for the discovery of biomarkers for cancer. In this study, we tested our previously published Gene Sub-Network-based Feature Selection (GSNFS) method to identify gene-subnetwork biomarkers with RNA-seq-based gene expression data of lung cancer. In addition, five different filter-based feature selection techniques were explored to rank identified subnetworks. We found that the majority of the top 10 ranked subnetworks were associated with cancer pathways such as the MAPK signalling pathway. With Support Vector Machine (SVM) as a classifier based on the Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC) curve using 10-fold cross-validation and cross-dataset validation, we showed that gene subnetwork biomarkers obtained by RNA-seq-based GSNFS analysis had excellent classification performance. Additionally, when comparing the top-ranked subnetworks obtained from RNA-seq-based GSNFS analysis with those top-ranked subnetworks previously obtained from DNA microarray-based GSNFS analysis, we could categorize subnetworks and found unique pathways of cancer for each data-based analysis. © 2020 ACM.


คำสำคัญ

Feature Selectionlung cancerRNA-Seq


อัพเดทล่าสุด 2023-25-09 ถึง 07:36