Orthogonal Polynomials Based Complex Gaussian Processes of Nonlinear Power Amplifier for 5G Wireless Communication Systems

Conference proceedings article


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งSongratthaset D., Pattaramalai S.

ปีที่เผยแพร่ (ค.ศ.)2020

ชื่อชุด22nd International Conference on Advanced Communications Technology (ICACT2020)

Volume number2020

หน้าแรก231

หน้าสุดท้าย236

จำนวนหน้า6

ISBN9791188428045

นอก1738-9445

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85083999450&doi=10.23919%2fICACT48636.2020.9061254&partnerID=40&md5=dfbc5f82ba323f3416544e58da3feb7d

ภาษาEnglish-Great Britain (EN-GB)


ดูในเว็บของวิทยาศาสตร์ | ดูบนเว็บไซต์ของสำนักพิมพ์ | บทความในเว็บของวิทยาศาสตร์


บทคัดย่อ

In this paper, an orthogonal polynomial based complex Gaussian process of nonlinear power amplifier for the filter bank multicarrier modulation (FBMC) systems is proposed. One of the most challenging problems for the FBMC systems is a non-linear distortion caused by a high power amplifier (HPA). Due to the signals for the FBMC communication scenario are modeled as a complex-Gaussian distribution, an analytical expression of the HPA characteristic based on an orthogonal polynomial method by using an upper triangle solution for complex-Gaussian process is derived in this paper. To ensure the robustness of the proposed orthogonal polynomials, the different input distribution such as an exponential and Rayleigh distribution is investigated. In the simulation, a normalized mean squared error (NMSE) and the probability of error performances (BER) in the additive white Gaussian noise (AWGN) channel and the frequency-selective Rayleigh fading channel of the proposed orthogonal polynomial method is determined. Simulation results show that the proposed orthogonal polynomial method significantly outperforms the conventional polynomial method. Furthermore, the proposed orthogonal polynomial based complex-Gaussian input distribution is superior to the exponential, and Rayleigh input distribution in terms of both NMSE and BER performance. © 2020 Global IT Research Institute - GIRI.


คำสำคัญ

HPA


อัพเดทล่าสุด 2023-17-10 ถึง 07:36