Logistic principle component analysis (L-PCA) for feature selection in classification
Conference proceedings article
ผู้เขียน/บรรณาธิการ
ไม่พบข้อมูลที่เกี่ยวข้อง
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Jitrawadee Rapeepongpan; Praisan Padungweang; Kittichai Lavangnananda
ผู้เผยแพร่: Institute of Electrical and Electronics Engineers Inc.
ปีที่เผยแพร่ (ค.ศ.): 2018
หน้าแรก: 745
หน้าสุดท้าย: 751
จำนวนหน้า: 7
ISBN: 9781538680971
URL: https://ieeexplore.ieee.org/document/8687309
ภาษา: English-United States (EN-US)
บทคัดย่อ
In Data Mining, especially when datasets are complex with many features existed. Data preparation and analysis may be necessary in implement effective data mining model, especially in classification of high dimensional data where not all features are important in the mining process. Hence, feature selection is an essential in data preprocessing. A well known technique in selecting useful attributes is Principle Component Analysis (PCA). The technique assigns a value to each component (feature), so order of importance among components can be apparent. This work presents a new feature selection method. It improves the effectiveness of PCA by means of utilizing the Logistic Function to become Logistic Principle Component Analysis (L-PCA). PCA and L-PCA are compared by means of classifying ten public domain datasets. The result reveals that LPCA is superior to PCA and able to select crucial features more efficiently.
คำสำคัญ
Classification, Data Mining, Logistic Function, Logistic Principle Component Analysis (L-PCA), Principle Component Analysis (PCA)