A New Active Fault Tolerant Control System: Predictive Online Fault Estimation

Journal article


Authors/Editors


Strategic Research Themes


Publication Details

Author listBavili R.E., Mohammadzadeh A., Tavoosi J., Mobayen S., Assawinchaichote W., Asad J.H., Mosavi A.H.

PublisherInstitute of Electrical and Electronics Engineers

Publication year2021

Volume number9

Start page118461

End page118471

Number of pages11

ISSN2169-3536

eISSN2169-3536

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85113847811&doi=10.1109%2fACCESS.2021.3107282&partnerID=40&md5=23067ea6f42232881e8ffd4138b951e8

LanguagesEnglish-Great Britain (EN-GB)


View in Web of Science | View on publisher site | View citing articles in Web of Science


Abstract

This study presents a new approach for active fault-tolerant controller (FTC) design for constrained nonlinear multi-variable systems. The proposed approach utilize the nonlinear model predictive controller (NMPC) and fault estimation method which is on basis of extended kalman filters (EKFs). The deficiency of actuators and sensors and also the plant states measurement errors are estimated by the suggested approach. A supervisor unit using the fault information and fault modeling per sampling time, corrects the predictor model of the controller and compensates actuator and sensor faults in control system. Furthermore, by the presented feedback compensation, the robustness of the designed method against plant faults and uncertainties is ensured. The important advantages of the proposed method are: (1) The suggested FTC scheme based on NMPC leads to calculate more accurate control action than MPC in nonlinear processes, (2) it is comprehensive in fault accommodation point of view because it is able to compensate all types of faults in control systems simultaneously, (3) it has low computational cost because of using NMPC by analytical solution, (4) it can handle control and states constraints to prevent of actuator saturations and unsafe situations, (5) the simplicity and effectiveness of the designed FTC scheme for real applications is more significant. Simulation results on continuous stirred tank reactor process verifies the superiority and capability of the designed approach. © 2013 IEEE.


Keywords

fault modelingFault-tolerant controllerpredictive control method


Last updated on 2023-18-10 at 07:44