Predicting Financial Assistance Requests using the Social Map Survey

Conference proceedings article


ผู้เขียน/บรรณาธิการ

ไม่พบข้อมูลที่เกี่ยวข้อง


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งTulyathan A., Samasiri P.

ผู้เผยแพร่Elsevier

ปีที่เผยแพร่ (ค.ศ.)2021

หน้าแรก48

หน้าสุดท้าย52

จำนวนหน้า5

ISBN9781665428415

นอก0928-4931

eISSN1873-0191

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85117510750&doi=10.1109%2fIBDAP52511.2021.9552169&partnerID=40&md5=89fb1ea677c29f7105de370eeb7eaf06

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

A survey was conducted in a vast scale across Thailand during 2018 regarding the Social Map project, a Big Data initiation project led by the Ministry of Social Development and Human Security. The Social Map (SM) survey data aim to gather information on social problem encountered by the Thais. One of the questions include their requests for financial assistance from the authorized government bodies. This study has developed a predictive model on the financial assistance request prediction up on an individual demographics data. Three classification modelling approaches have been explored and XGBoost was found to give the most reliable predictive results. The model precision is in the range of 0.7-0.8 depending on the criteria used. Feature importance analysis can help identify the factors that affect the tendency for an individual to be in needs of the financial assistance. These factors include being a farmer, age, household income, number of children, number of household members and age of the householder. Later, we illustrate that the model may be applied to other data sets to reveal further useful insight which can be useful for policy makers initiate actions that can target those vulnerable groups more precisely. © 2021 IEEE.


คำสำคัญ

social mapvulnerable groups


อัพเดทล่าสุด 2023-18-10 ถึง 07:44