Convolutional Neural Network-Based Obstructive Sleep Apnea Identification

Conference proceedings article


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งDong Q., Jiraraksopakun Y., Bhatranand A.

ผู้เผยแพร่Elsevier

ปีที่เผยแพร่ (ค.ศ.)2021

หน้าแรก424

หน้าสุดท้าย428

จำนวนหน้า5

ISBN9780738126043

นอก0928-4931

eISSN1873-0191

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85113331094&doi=10.1109%2fICCCS52626.2021.9449255&partnerID=40&md5=04e215a96b21fc3e35abd52124b8f0d2

ภาษาEnglish-United States (EN-US)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

Obstructive Sleep Apnea (OSA) identification aims to recognize the sounds from the obstructive sleep apneahypopnea syndrome (OSANHS) patients. Despite remarkable advances have been made, the performance heavily relies on the sound representation. Feature selection is needed to improve the performance. Generally, the normal snoring and the snoring of OSANHS patients have a greater difference in acoustic characteristics. Ordinary snoring of human breathing is a regular, fluctuating and cyclical state, while OSANHS pathological snoring is often accompanied by a long pause. Based on the acoustic characteristics, this paper proposes an OSA recognition algorithm based on a convolutional neural network. First, the Mel-scale frequency cepstral coefficient (MFCC) of the sound are extracted. Then, convolutional neural network is deployed to predict the possibility of OSA. To empirically investigate the effectiveness and robustness of the proposed approach, extensive experiments were performed on a benchmark dataset. The obtained results showed that our method significantly outperforms related baselines and is also competitive or superior to the recently reported systems. © 2021 IEEE.


คำสำคัญ

Obstructive Sleep Apnea


อัพเดทล่าสุด 2023-17-10 ถึง 07:36