Multi-objective Trip Planning with Solution Ranking Based on User Preference and Restaurant Selection
บทความในวารสาร
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: SUPOJ CHOACHAICHAROENKUL, DAVID COIT AND NARUEMON WATTANAPONGSAKORN
ผู้เผยแพร่: Institute of Electrical and Electronics Engineers
ปีที่เผยแพร่ (ค.ศ.): 2022
วารสาร: IEEE Access (2169-3536)
Volume number: 10
หน้าแรก: 10688
หน้าสุดท้าย: 10705
จำนวนหน้า: 18
นอก: 2169-3536
eISSN: 2169-3536
URL: https://ieeexplore.ieee.org/document/9686707
ดูในเว็บของวิทยาศาสตร์ | ดูบนเว็บไซต์ของสำนักพิมพ์ | บทความในเว็บของวิทยาศาสตร์
บทคัดย่อ
The tourist trip design problem (TTDP) helps the trip planners, such as tourists, tour companies, and government agencies, automate their trip planning. TTDP solver chooses and sequences an optimal subset of point of interest (POIs), which adhere to the POIs attributes and tourist preferences, and then generates a travel itinerary that maximizes their pleasure. However, the traditional TTDP does not include the lunch period at a local restaurant, which causes the rest of the itinerary in the afternoon to shift, nor compulsory POIs that the trip planners must be included in the itinerary. Moreover, as tourism contributes to high greenhouse gas emissions, especially from its transportation, minimizing the itinerary’s total distance is also considered. Unfortunately, this objective conflicts with the profit scores; no single itinerary can optimize both objectives simultaneously. Hence, the multi-objective technique and the results of non-dominated itineraries can be organized as a Pareto front. The trip planners can choose one suitable itinerary from the Pareto front based on their preferences. To address these real-world issues, we formulate a new variant of the well-known orienteering problem with time windows (OPTW) called the multi-objective orienteering problem with Time Windows, Restaurant Selection, and Compulsory POIs (MOPTW-RSCP). The proposed problem is provided with a mathematical formulation and two exact algorithms for solving them, i.e., greedy and branch-and-cut Pareto-based techniques. The algorithms’ performance is tested against the Rattanakosin island (the old city of Bangkok) dataset. We conduct 24 test cases, and the computational results confirm the algorithms’ efficiency.
คำสำคัญ
Multi-Objective Optimization