Spatiotemporal Data of Vegetation Images for Convolutional Neural Network: Okra Case Study

Conference proceedings article


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งBarakatullah Azizi, Narongrit Waraporn

ปีที่เผยแพร่ (ค.ศ.)2021

ชื่อชุด.

เลขในชุด12th

Volume number.

หน้าแรก504

หน้าสุดท้าย508

จำนวนหน้า5

URLhttps://ieee-uemcon.org/

ภาษาEnglish-Great Britain (EN-GB)


ดูในเว็บของวิทยาศาสตร์ | ดูบนเว็บไซต์ของสำนักพิมพ์ | บทความในเว็บของวิทยาศาสตร์


บทคัดย่อ

Rapid development of modern IoT applications requires the deep learning model to support the accuracy of their operation. In order to acquire the high accuracy to the deep learning model, the understanding of spatial and temporal dimension of their data acquisition is necessary for each different form of the learning processes. In this paper, we categorized four forms of spatiotemporal data acquisition according to its spatial growth and time length of data acquisition. We demonstrated the inert growth and long-term spatiotemporal data acquisition form from an IoT system. We used okra vegetation as a case study of the classification on Convolutional Neural Network, CNN. Okra plant images were collected for the growth of spatial data in the half-hour periodic acquisition. Two adaptive convolutional neural networks; GoogLeNet and AlexNet were experimented for classification models. The results showed their accuracy of 99.3% and 99.8% respectively.

Keywords


คำสำคัญ

เครือข่ายประสาทแบบคอนโวลูชัน (Convolutional Neural Networks)


อัพเดทล่าสุด 2023-26-09 ถึง 07:37