Comparative Study of Inlet Structure and Obstacle Plate Designs Affecting the Temperature Stratification Characteristics

Journal article


Authors/Editors


Strategic Research Themes


Publication Details

Author listPiyatida Trinuruk , Papangkorn Jenyongsak and Somchai Wongwises

PublisherMDPI

Publication year2022

JournalEnergies (1996-1073)

Volume number15

Issue number6

ISSN1996-1073

eISSN1996-1073

URLhttps://www.mdpi.com/1996-1073/15/6/2032

LanguagesEnglish-United States (EN-US)


View in Web of Science | View on publisher site | View citing articles in Web of Science


Abstract

Temperature stratification between outgoing hot water and incoming cold water is a key factor in diminishing energy loss during the discharging process and maximizing the useful hot water delivered from the tank or enhancing the thermal efficiency of the heating device during the heating process. In this study, the inlet structure and the obstacle plate were designed and modified based on two main factors, the reduction of inlet water velocity and the stipulation of the water recirculation area, to develop temperature stratification through the computational fluid dynamics method. The simulation model’s accuracy was validated against the experimental results. The results showed that using the equalizer as an inlet pipe’s auxiliary device was the best approach for decreasing the inlet water velocity, which resulted in enhancing temperature stratification. The discharging efficiency improved from 77.3% for the original tank model to 86.1% for the tank with equalizer IV model, which meant an additional 45 L of useful hot water was gained from the good temperature stratification storage tank. The installation of the obstacle plate for controlling the turbulence zone could not improve temperature stratification significantly, which resulted in an increase in discharging efficiency by only 4% more than the original tank model.Temperature stratification between outgoing hot water and incoming cold water is a key factor in diminishing energy loss during the discharging process and maximizing the useful hot water delivered from the tank or enhancing the thermal efficiency of the heating device during the heating process. In this study, the inlet structure and the obstacle plate were designed and modified based on two main factors, the reduction of inlet water velocity and the stipulation of the water recirculation area, to develop temperature stratification through the computational fluid dynamics method. The simulation model’s accuracy was validated against the experimental results. The results showed that using the equalizer as an inlet pipe’s auxiliary device was the best approach for decreasing the inlet water velocity, which resulted in enhancing temperature stratification. The discharging efficiency improved from 77.3% for the original tank model to 86.1% for the tank with equalizer IV model, which meant an additional 45 L of useful hot water was gained from the good temperature stratification storage tank. The installation of the obstacle plate for controlling the turbulence zone could not improve temperature stratification significantly, which resulted in an increase in discharging efficiency by only 4% more than the original tank model.


Keywords

No matching items found.


Last updated on 2023-17-10 at 07:40