Effects of Preprocessing in Person Identification Using Ear Features

Conference proceedings article


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งPatmanee J., Kanprachar S., Chamnongthai K.

ผู้เผยแพร่Taiwan Association for Aerosol Research

ปีที่เผยแพร่ (ค.ศ.)2021

หน้าแรก443

หน้าสุดท้าย447

จำนวนหน้า5

ISBN9781665411974

นอก1680-8584

eISSN2071-1409

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85125198343&doi=10.1109%2fICSEC53205.2021.9684602&partnerID=40&md5=e9958d8093e35e6692acb15b6cacb914

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

Currently, face masking is strongly recommended for people when being outside in order to prevent the COVID-19 spread. However, by doing so, the face area is significantly blocked by the mask, resulting in an ineffective accuracy for face recognition system. To be able to identify a person while wearing a face mask, an alternative system has to be considered. There have been several studies in ear recognition system in which an impressive accuracy is obtained. In this work, ear recognition system with the AMI ear database is studied.The feature in terms of histogram of oriented gradients (HOG) is used, and the support vector machine (SVM) is adopted for classification process. To increase the recognition accuracy, ear images are preprocessed by adjusting the sharpness level. It is found that using the concatenated HOG features from the sharpened RGB and HSV images, a promising average recognition accuracy of 86% and the standard deviation of 2.91% are obtained. © 2021 IEEE.


คำสำคัญ

AMI Ear DatabaseEar recognition systemHistogram of Oriented Gradients (HOG)


อัพเดทล่าสุด 2024-08-10 ถึง 12:00