A Geometrial Approach to the Diophantine Equation x12 + x22 + x32 + ... + xn2 = u2

Journal article


Authors/Editors


Strategic Research Themes


Publication Details

Author listRatchanikorn Chonchaiya;Warin Vipismakul;Arisa Jiratampradab

Publication year2021

Volume number1370

Issue number3

Start page1364

End page1370

Number of pages7

ISSN16742370

URLhttp://science.buu.ac.th/ojs246/index.php/sci/article/view/3471


Abstract

We find all Diophantine solutions for the equation x12 + x22  +  x32  + ... + xn2 = u2 by geometrical approach from (Ayoub, 1984) to find solutions of the equation (Ayoub, 1984) to find solutions of the equation x2 + y2 + z2 = u2. We can find all rational points on theunit n-sphere by lines connecting those rational points to the point (1, 0 , ..., 0 ). Such linear parametric equations will always have rational slopes.


Keywords

ทรงกลมหนึ่งหน่วย มิติสมการไดโอแฟนไทน์สามสิ่งอันดับพีทาโกรัส


Last updated on 2023-11-01 at 23:05