A Geometrial Approach to the Diophantine Equation x12 + x22 + x32 + ... + xn2 = u2
Journal article
Authors/Editors
Strategic Research Themes
Publication Details
Author list: Ratchanikorn Chonchaiya;Warin Vipismakul;Arisa Jiratampradab
Publication year: 2021
Volume number: 1370
Issue number: 3
Start page: 1364
End page: 1370
Number of pages: 7
ISSN: 16742370
URL: http://science.buu.ac.th/ojs246/index.php/sci/article/view/3471
Abstract
We find all Diophantine solutions for the equation x12 + x22 + x32 + ... + xn2 = u2 by geometrical approach from (Ayoub, 1984) to find solutions of the equation (Ayoub, 1984) to find solutions of the equation x2 + y2 + z2 = u2. We can find all rational points on theunit n-sphere by lines connecting those rational points to the point (1, 0 , ..., 0 ). Such linear parametric equations will always have rational slopes.
Keywords
ทรงกลมหนึ่งหน่วย มิติ, สมการไดโอแฟนไทน์, สามสิ่งอันดับพีทาโกรัส