A Numerical Study Based on Haar Wavelet Collocation Methods of Fractional-Order Antidotal Computer Virus Model
บทความในวารสาร
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Rahat Zarin, Hammad Khaliq, Amir Khan, Iftikhar Ahmed, Usa Wannasingha Humphries
ผู้เผยแพร่: MDPI
ปีที่เผยแพร่ (ค.ศ.): 2023
Volume number: 15
Issue number: 3
หน้าแรก: 621
นอก: 20738994
eISSN: 2073-8994
URL: https://www.mdpi.com/2073-8994/15/3/621
ภาษา: English-Great Britain (EN-GB)
บทคัดย่อ
Computer networks can be alerted to possible viruses by using kill signals, which reduces the risk of virus spreading. To analyze the effect of kill signal nodes on virus propagation, we use a fractional-order SIRA model using Caputo derivatives. In our model, we show how a computer virus spreads in a vulnerable system and how it is countered by an antidote. Using the Caputo operator, we fractionalized the model after examining it in deterministic form. The fixed point theory of Schauder and Banach is applied to the model under consideration to determine whether there exists at least one solution and whether the solution is unique. In order to calculate the approximate solution to the model, a general numerical algorithm is established primarily based on Haar collocations and Broyden’s method. In addition to being mathematically fast, the proposed method is also straightforward and applicable to different mathematical models.
คำสำคัญ
computer virus, stability analysis, caputo derivative, Broyden’s method, Haar wavelet, numerical simulations