A Numerical Study Based on Haar Wavelet Collocation Methods of Fractional-Order Antidotal Computer Virus Model
Journal article
Authors/Editors
Strategic Research Themes
Publication Details
Author list: Rahat Zarin, Hammad Khaliq, Amir Khan, Iftikhar Ahmed, Usa Wannasingha Humphries
Publisher: MDPI
Publication year: 2023
Volume number: 15
Issue number: 3
Start page: 621
ISSN: 20738994
eISSN: 2073-8994
URL: https://www.mdpi.com/2073-8994/15/3/621
Languages: English-Great Britain (EN-GB)
Abstract
Computer networks can be alerted to possible viruses by using kill signals, which reduces the risk of virus spreading. To analyze the effect of kill signal nodes on virus propagation, we use a fractional-order SIRA model using Caputo derivatives. In our model, we show how a computer virus spreads in a vulnerable system and how it is countered by an antidote. Using the Caputo operator, we fractionalized the model after examining it in deterministic form. The fixed point theory of Schauder and Banach is applied to the model under consideration to determine whether there exists at least one solution and whether the solution is unique. In order to calculate the approximate solution to the model, a general numerical algorithm is established primarily based on Haar collocations and Broyden’s method. In addition to being mathematically fast, the proposed method is also straightforward and applicable to different mathematical models.
Keywords
computer virus, stability analysis, caputo derivative, Broyden’s method, Haar wavelet, numerical simulations