Development of a fluidized bed reactor for phosphorus recovery from rubber industry wastewater through struvite formation: material selection and prototype
บทความในวารสาร
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Danai Maddewor, Patiya Kemacheevakul, Nipaphan Phungsombun, Pongsavat Savatdipap and Surawut Chuangchote
ผู้เผยแพร่: Royal Society of Chemistry
ปีที่เผยแพร่ (ค.ศ.): 2024
วารสาร: Environmental Science: Water Research & Technology (2053-1400)
นอก: 2053-1400
eISSN: 2053-1400
URL: https://api.elsevier.com/content/abstract/scopus_id/85199490056
ภาษา: English-United States (EN-US)
บทคัดย่อ
A fluidized bed reactor for phosphorus (P) recovery from treated rubber industry wastewater through struvite formation was developed. The optimum conditions for struvite recovery and appropriate materials for fabricating the reactor were investigated. The results showed that pH 9 and magnesium (Mg):P molar ratio of 1.2:1 were the optimum ones. For the material selection part, struvite adhesion was tested on different materials (stainless steel, acrylic, epoxy resin fiberglass, vinyl ester resin fiberglass, aluminum, and galvanized steel). Stainless steel and acrylic had the lowest scale on the materials (0.11±0.01 mg/cm2 of testing area and 0.23 ± 0.01 mg/cm2 of testing area, respectively), while galvanized steel had the highest scale on the material (0.69±0.03 mg/cm2 of testing area). The reason was different materials have different surface roughness and contact angles. Moreover, Cl- concentration and pH also impacted struvite fouling. Therefore, stainless steel was selected for the fabrication of a struvite reactor. The reactor was operated at a hydraulic retention time (HRT) of 2 h without mixing equipment, which consumed less energy. The P recovery efficiency of the reactor was very high (93%), which was suitable for future applications.
คำสำคัญ
Fluidized bed reactor, Material, phosphorus recovery, Scale formation, Stainless steel, struvite