Development of a fluidized bed reactor for phosphorus recovery from rubber industry wastewater through struvite formation: material selection and prototype

Journal article


Authors/Editors


Strategic Research Themes


Publication Details

Author listDanai Maddewor, Patiya Kemacheevakul, Nipaphan Phungsombun, Pongsavat Savatdipap and Surawut Chuangchote

PublisherRoyal Society of Chemistry

Publication year2024

JournalEnvironmental Science: Water Research & Technology (2053-1400)

ISSN2053-1400

eISSN2053-1400

URLhttps://api.elsevier.com/content/abstract/scopus_id/85199490056

LanguagesEnglish-United States (EN-US)


View on publisher site


Abstract

A fluidized bed reactor for phosphorus (P) recovery from treated rubber industry wastewater through struvite formation was developed. The optimum conditions for struvite recovery and appropriate materials for fabricating the reactor were investigated. The results showed that pH 9 and magnesium (Mg):P molar ratio of 1.2:1 were the optimum ones. For the material selection part, struvite adhesion was tested on different materials (stainless steel, acrylic, epoxy resin fiberglass, vinyl ester resin fiberglass, aluminum, and galvanized steel). Stainless steel and acrylic had the lowest scale on the materials (0.11±0.01 mg/cm2 of testing area and 0.23 ± 0.01 mg/cm2 of testing area, respectively), while galvanized steel had the highest scale on the material (0.69±0.03 mg/cm2 of testing area). The reason was different materials have different surface roughness and contact angles. Moreover, Cl- concentration and pH also impacted struvite fouling. Therefore, stainless steel was selected for the fabrication of a struvite reactor. The reactor was operated at a hydraulic retention time (HRT) of 2 h without mixing equipment, which consumed less energy. The P recovery efficiency of the reactor was very high (93%), which was suitable for future applications.


Keywords

Fluidized bed reactorMaterialphosphorus recoveryScale formationStainless steelstruvite


Last updated on 2024-06-08 at 00:00