A BEM-based domain meshless method for the analysis of Mindlin plates with general boundary conditions

บทความในวารสาร


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์

ไม่พบข้อมูลที่เกี่ยวข้อง


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งChinnaboon B., Chucheepsakul S., Katsikadelis J.T.

ผู้เผยแพร่Elsevier

ปีที่เผยแพร่ (ค.ศ.)2011

วารสารComputer Methods in Applied Mechanics and Engineering (0045-7825)

Volume number200

Issue number13-16

หน้าแรก1379

หน้าสุดท้าย1388

จำนวนหน้า10

นอก0045-7825

eISSN1879-2138

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-78751643436&doi=10.1016%2fj.cma.2010.12.014&partnerID=40&md5=fd7e9dd2f6b6bdab1602505f57a14e3e

ภาษาEnglish-Great Britain (EN-GB)


ดูในเว็บของวิทยาศาสตร์ | ดูบนเว็บไซต์ของสำนักพิมพ์ | บทความในเว็บของวิทยาศาสตร์


บทคัดย่อ

In this paper, a BEM-based domain meshless method is developed for the analysis of moderately thick plates modeled by Mindlin's theory which permits the satisfaction of three physical conditions along the plate boundary. The presented method is achieved using the concept of the analog equation of Katsikadelis. According to this concept, the original governing differential equations are replaced by three uncoupled Poisson's equations with fictitious sources under the same boundary conditions. The fictitious sources are established using a technique based on BEM and approximated by radial basis functions series. The solution of the actual problem is obtained from the known integral representation of the potential problem. Thus, the kernels of the boundary integral equations are conveniently established and evaluated. The presented method has the advantages of the BEM in the sense that the discretization and integration are performed only on the boundary, and consequently Mindlin plates with general boundary conditions can be analyzed without difficulty. To illustrate the effectiveness, applicability as well as accuracy of the method, numerical results of various example problems are presented. ฉ 2010 Elsevier B.V.


คำสำคัญ

Analog equationMeshlessMindlinThick plates


อัพเดทล่าสุด 2023-26-09 ถึง 07:35