A BEM-based domain meshless method for the analysis of Mindlin plates with general boundary conditions
Journal article
Authors/Editors
Strategic Research Themes
No matching items found.
Publication Details
Author list: Chinnaboon B., Chucheepsakul S., Katsikadelis J.T.
Publisher: Elsevier
Publication year: 2011
Journal: Computer Methods in Applied Mechanics and Engineering (0045-7825)
Volume number: 200
Issue number: 13-16
Start page: 1379
End page: 1388
Number of pages: 10
ISSN: 0045-7825
eISSN: 1879-2138
Languages: English-Great Britain (EN-GB)
View in Web of Science | View on publisher site | View citing articles in Web of Science
Abstract
In this paper, a BEM-based domain meshless method is developed for the analysis of moderately thick plates modeled by Mindlin's theory which permits the satisfaction of three physical conditions along the plate boundary. The presented method is achieved using the concept of the analog equation of Katsikadelis. According to this concept, the original governing differential equations are replaced by three uncoupled Poisson's equations with fictitious sources under the same boundary conditions. The fictitious sources are established using a technique based on BEM and approximated by radial basis functions series. The solution of the actual problem is obtained from the known integral representation of the potential problem. Thus, the kernels of the boundary integral equations are conveniently established and evaluated. The presented method has the advantages of the BEM in the sense that the discretization and integration are performed only on the boundary, and consequently Mindlin plates with general boundary conditions can be analyzed without difficulty. To illustrate the effectiveness, applicability as well as accuracy of the method, numerical results of various example problems are presented. ฉ 2010 Elsevier B.V.
Keywords
Analog equation, Meshless, Mindlin, Thick plates