Effects of drying methods and conditions on antimicrobial activity of edible chitosan films enriched with galangal extract

Journal article


Authors/Editors


Strategic Research Themes

No matching items found.


Publication Details

Author listMayachiew P., Devahastin S., Mackey B.M., Niranjan K.

PublisherElsevier

Publication year2010

JournalFood Research International (0963-9969)

Volume number43

Issue number1

Start page125

End page132

Number of pages8

ISSN0963-9969

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-72449144780&doi=10.1016%2fj.foodres.2009.09.006&partnerID=40&md5=6fb478a7a228dfcd164234b0ac99b4e6

LanguagesEnglish-Great Britain (EN-GB)


View in Web of Science | View on publisher site | View citing articles in Web of Science


Abstract

The aim of this work was to study the effects of drying methods and conditions (i.e., ambient drying, hot air drying at 40 ฐC, vacuum drying and low-pressure superheated steam drying within the temperature range of 70-90 ฐC at an absolute pressure of 10 kPa) as well as the concentration of galangal extract on the antimicrobial activity of edible chitosan films against Staphylococcus aureus. Galangal extract was added to the film forming solution as a natural antimicrobial agent in the concentration range of 0.3-0.9 g/100 g. Fourier transform infrared (FTIR) spectra and swelling of the films were also evaluated to investigate interaction between chitosan and the galangal extract. The antimicrobial activity of the films was evaluated by the disc diffusion and viable cell count method, while the morphology of bacteria treated with the antimicrobial films was observed via transmission electron microscopy (TEM). The antimicrobial activity, swelling and functional group interaction of the antimicrobial films were found to be affected by the drying methods and conditions as well as the concentration of the galangal extract. The electron microscopic observations revealed that cell wall and cell membrane of S. aureus treated by the antimicrobial films were significantly damaged. ฉ 2009 Elsevier Ltd. All rights reserved.


Keywords

Fourier transform infrared spectroscopyNatural antimicrobial agentTransmission electron microscopy


Last updated on 2023-18-10 at 07:41