Artificial neural network modeling of physicochemical changes of shrimp during boiling
บทความในวารสาร
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
ไม่พบข้อมูลที่เกี่ยวข้อง
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Niamnuy C., Kerdpiboon S., Devahastin S.
ผู้เผยแพร่: Elsevier
ปีที่เผยแพร่ (ค.ศ.): 2012
วารสาร: LWT - Food Science and Technology (0023-6438)
Volume number: 45
Issue number: 1
หน้าแรก: 110
หน้าสุดท้าย: 116
จำนวนหน้า: 7
นอก: 0023-6438
ภาษา: English-Great Britain (EN-GB)
ดูในเว็บของวิทยาศาสตร์ | ดูบนเว็บไซต์ของสำนักพิมพ์ | บทความในเว็บของวิทยาศาสตร์
บทคัดย่อ
Frozen boiled shrimp and dried shrimp are among the high-value fishery products of Thailand. During the production of these products boiling is one of the most important steps that affects significantly the product physicochemical properties, especially the quantity and quality of proteins, which in turn affect other apparent properties perceived by consumers. The protein changes are, however, difficult to evaluate comparing to other typical physical properties of shrimp. The objective of this study was therefore to develop an artificial neural network (ANN) model to predict the protein changes of shrimp in terms of protein loss and protein denaturation as a function of the boiling conditions, namely, concentration of salt solution and boiling time, as well as a rather easily determined change of shrimp, that is, cooking loss. Other apparent physical changes of shrimp viz. shrinkage and hardness were also predicted. The optimized ANN structure for the prediction of protein changes consists of two hidden layers and twelve neurons per layer, while the optimized ANN structure for the prediction of physical changes consisted of two hidden layers and eight neurons per layer. The predicted protein and physical changes agreed very well with the experimental data with R2 > 0.994 and 0.972, respectively. ฉ 2011 Elsevier Ltd.
คำสำคัญ
Hardness, Neural network, Protein denaturation, Protein loss, Shrinkage