A novel optimal PID controller autotuning design based on the SLP algorithm
บทความในวารสาร
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Pongfai J., Su X., Zhang H., Assawinchaichote W.
ผู้เผยแพร่: Wiley
ปีที่เผยแพร่ (ค.ศ.): 2020
วารสาร: Expert Systems: The Journal of Knowledge Engineering (0266-4720)
Volume number: 37
Issue number: 2
นอก: 0266-4720
eISSN: 1468-0394
ภาษา: English-Great Britain (EN-GB)
ดูในเว็บของวิทยาศาสตร์ | ดูบนเว็บไซต์ของสำนักพิมพ์ | บทความในเว็บของวิทยาศาสตร์
บทคัดย่อ
In this study, the molecular compressibility (k m ) of a fatty-acid methyl ester (FAME) or a biodiesel is correlated with ΔG, (Formula presented.), via the Gibbs energy additivity method, where MW is the molecular weight of the FAME or the average MW of the biodiesel. The Gibbs energy associated with molecular compressibility ((Formula presented.)) is further correlated with the structure of FAME. Thus, the relationship between the structure (of a FAME or a biodiesel) and the physical property (k m ) is established. Thus, k m of a FAME at different temperatures can be easily estimated from the carbon numbers of fatty acid (z) and the number of double bonds (n d ) with good accuracy. For biodiesel, k m is calculated from the same equation with the average z (z (ave) ) and average n d (n d(ave) ). k m is not temperature independent and a slight change in k m depends on the structure of the FAME and biodiesel. For FAME having 14 carbon atoms or less in the fatty acid, k m decreases as temperature is increased. On the other hand, for FAME with a longer chain length (16 or higher), k m increases as temperature is increased. Similarly, a double bond in the long-chain FAME is more sensitive to temperature than the saturated FAME. © 2018 AOCS
คำสำคัญ
Fatty-acid methyl ester, Gibbs energy additivity, Molecular compressibility