Preparation and Characterization of Iron Oxide Decorated Graphene Nanoplatelets for Use as Barrier Enhancing Fillers in Polyurethane Based Solar Cell Encapsulant

Conference proceedings article


Authors/Editors


Strategic Research Themes


Publication Details

Author listYuwawech K., Wootthikanokkhan J., Tanpichai S.

PublisherElsevier

Publication year2020

Volume number23

Start page703

End page711

Number of pages9

ISSN2214-7853

eISSN2214-7853

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084520713&doi=10.1016%2fj.matpr.2019.12.262&partnerID=40&md5=01ade44394d6e793738b75449c8d2689

LanguagesEnglish-Great Britain (EN-GB)


View on publisher site


Abstract

This work has concerned the development of iron oxide (Fe3O 4)/graphene nanoplatelets (GNPs) for use as barrier enhancing filler in polyurethane based encapsulating materials. The aim of this work is to investigate the effects of GNPs types and the concentration of Fe3O4 on orientation the functionalized GNPs in the PU composites under magnetic field. It was hypothesized that, by properly controlling the orientation of GNPs in the polymer matrix, the greater barrier properties of the composite encapsulant can be expected. Experimentally, Fe3O4 nanoparticles were firstly prepared by treating ferric chloride hexahydrate (FeCl3.6H2O) with hydrazine (N2H4). After that, the product (Fe3O4) was introduced into GNPs. The ratio of the Fe3O4 nanoparticles to GNPs was varied between 0.1 and 1. Superparamagnetic behavior of the composite was observed when the weight ratio of Fe3O 4 to GNPs was greater than 0.3/1. Consequently, this ratio was used for the preparation of polyurethane/GNPs nanocomposite. Finally, the feasibility of applying the film reinforced with PU/Fe3O4 decorated GNPs as an encapsulating material for a flexible organic photovoltaic cell was explored. Performance and durability of the various devices were measured and compared. © 2019 Elsevier Ltd.


Keywords

Fe3O4-GNPsGraphene nanoplatelets (GNPs)Superparamagnetic


Last updated on 2023-14-10 at 07:35